Role of TGF-beta1 in relation to exercise-induced type I collagen synthesis in human tendinous tissue.

نویسندگان

  • Katja Heinemeier
  • Henning Langberg
  • Jens L Olesen
  • Michael Kjaer
چکیده

Mechanical loading of tissue is known to influence local collagen synthesis, and microdialysis studies indicate that mechanical loading of human tendon during exercise elevates tendinous type I collagen production. Transforming growth factor-beta1 (TGF-beta1), a potent stimulator of type I collagen synthesis, is released from cultured tendon fibroblasts in response to mechanical loading. Thus TGF-beta1 could link mechanical loading and collagen synthesis in tendon tissue in vivo. Tissue levels of TGF-beta1 and type I collagen metabolism markers [procollagen I COOH-terminal propeptide (PICP) and COOH-terminal telopeptide of type I collagen (ICTP)] were measured by microdialysis in peritendinous tissue of the Achilles' tendon in six male volunteers before and after treadmill running (1 h, 12 km/h, 3% uphill). In addition, blood levels of TGF-beta1, PICP, and ICTP were obtained. PICP levels increased 68 h after exercise (P < 0.05). Dialysate levels of TGF-beta1 changed from 303 +/- 46 pg/ml (at rest) to 423 +/- 86 pg/ml 3 h postexercise. This change was nonsignificant, but the decay of tissue TGF-beta1 after catheter insertion was markedly delayed by exercise compared with the decay seen in resting subjects. Plasma concentrations of TGF-beta1 rose 30% in response to exercise (P < 0.05 vs. pre). Our observations indicate an increased local production of type I collagen in human peritendinous tissue in response to uphill running. Although not conclusive, changes in circulating and local TGF-beta1, in response to exercise, suggest a role for TGF-beta1 in mechanical regulation of local collagen type I synthesis in tendon-related connective tissue in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Induction of Chondrogenic Differentiation of Human Adipose-Derived Stem Cells with TGF-β3 in Pellet Culture System

Objective Adult stem cells which are derived from different tissues, with their unique abilities to self-renew and differentiate into various phenotypes have the potential for cell therapy and tissue engineering. Human adipose tissue is an appropriate source of mesenchymal stem cells with wide differentiation potential for tissue engineering research. In this study isolated stem cells from hum...

متن کامل

Endoglin modulation of TGF-beta1-induced collagen synthesis is dependent on ERK1/2 MAPK activation.

BACKGROUND/AIMS Transforming growth factor-beta1 (TGF-beta1) plays a pivotal role in the extracellular matrix accumulation observed in fibrotic diseases. Endoglin is an important component of the TGF-beta receptor complex highly expressed in tissues undergoing fibrotic processes. Endoglin expression regulates the effect of TGF-beta on extracellular matrix synthesis. The purpose of our study has...

متن کامل

Role of connective tissue growth factor in the pathogenesis of conjunctival scarring in ocular cicatricial pemphigoid.

PURPOSE Conjunctival fibrosis due to excessive accumulation of collagens is an important histologic feature in ocular cicatricial pemphigoid (OCP). Studies have suggested a role of transforming growth factor (TGF)-beta1 in conjunctival fibrosis in patients with OCP. Connective tissue growth factor (CTGF) is an important downstream mediator of TGF-beta1-induced collagen synthesis. CTGF usually a...

متن کامل

Alpha-MSH suppresses collagen synthesis

Suppression of collagen synthesis is a major therapeutic goal in treatment of fibrotic disorders. We show here that alpha-melanocyte-stimulating hormone (alpha-MSH), a neuropeptide well known for its pigment-inducing capacity, modulates collagen synthesis and deposition. AlphaMSH in vitro suppresses the synthesis of collagen type I, III and V and down-regulates the secretion of procollagen type...

متن کامل

Collagen metabolism - a novel target of the neuropeptide alpha-melanocyte-stimulating hormone

Suppression of collagen synthesis is a major therapeutic goal in treatment of fibrotic disorders. We show here that alpha-melanocyte-stimulating hormone (alpha-MSH), a neuropeptide well known for its pigment-inducing capacity, modulates collagen synthesis and deposition. AlphaMSH in vitro suppresses the synthesis of collagen type I, III and V and down-regulates the secretion of procollagen type...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 95 6  شماره 

صفحات  -

تاریخ انتشار 2003